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1. Introduction 

The purpose of this primer is to provide information and insight into the features that may be 
used to develop prognostic and diagnostic algorithms for determining the health of a ball 
bearing. Condition-based maintenance (CBM) is the new paradigm for the Army. CBM is a 
change of maintenance operation where the fault is detected and a failed component is replaced 
when necessary. To correctly infer the health status of a piece of machinery, it would be ideal to 
embed a “built-in test” capability into the hardware during its development cycle. As of this 
writing, such capability does not typically exist, and even if it did, the applied diagnostics 
techniques would likely be developed under the ideal usage case, which will not necessarily 
cover the full domain of usage cases. It would be wonderful if the output of the sensor could be 
read out directly and a corresponding decision determined based on the reading, but in practice 
this is usually not the case for mechanical systems. Sensors will be needed, as well as the correct 
interpretation of the sensor information they provide. Furthermore, vast amounts of statistical 
data will need to be collected in order to develop and train algorithms for diagnostics and 
prognostics. A very critical piece of information that needs to be collected in the development of 
prognostic and diagnostic algorithms is the “ground truth,” which permits correlation to the 
actual health condition of the hardware that is being monitored. This data-driven methodology 
paradigm is necessary in order to develop the proper detection of a fault, its meaning, and its 
remaining useful life. 

A data-driven approach was studied at the US Army Research Laboratory (ARL) for a 
mechanical system. In order to develop the appropriate algorithms, a well-controlled test needed 
to be executed that measured the sensor response as the hardware was exercised from a health 
operational state into its end of life with clear health states during the test. The applied 
techniques and algorithms are derived from the many fields of statistics and probability, digital 
signal processing, pattern recognition, data mining, and machine learning. 

The development of prognostic and diagnostic algorithms involves exploring many techniques 
that can be used to provide anomaly detection, classification, and regression analysis. One can 
develop these algorithms based on evaluation of these techniques, but a domain expert may be 
needed to interpret the operational status of the hardware. These algorithms are highly dependent 
on the sensor information. An accelerometer device was the primary sensor employed to provide 
data for the oil cooler bearing evaluation under a previous project. The sensor device should be 
capable of capturing information related to the hardware platform as correlated to fault, 
degradation, and end of life indicators. In many applications, this information cannot be 
determined directly from the sensor data. The raw sensor data will need to be mapped to other 
feature sets that provide clear indicators of health status.  
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This report provides insight into the life of a roller bearing as it degrades. These components 
have been studied over many decades and its characteristics described. One important aspect has 
been the development of features that relate bearing degradation in its various phases of life. It is 
important to the algorithms that these features correlate very well with the bearing’s telltale 
signs. These features should correlate with a measureable progression as the bearing operates 
over its life. Typically, the features need to have sufficient a signal-to-noise ratio and some 
growth related to the component’s degradation.  

2. Bearing Construction 

A bearing serves the purpose of a load-carrying member that allows a component to rotate with 
respect to a mechanical assembly. The mechanical coupling is provided through a shaft that 
engages the inner race component of the bearing. An example of a bearing component and 
construction is illustrated in Fig. 1. In this case, a ball bearing is shown. There are other bearing 
constructions that use taper cylinder components in place of the roller ball, but the principles are 
the same. Given the manufacturer and model number, the mechanical specification can be 
determined from the manufacturer’s catalog. 

 

Fig. 1   Ball bearing illustration1 

3. Failures 

A summary of analysis from the literature in terms of deterioration of the bearings resulted in the 
identification of the following failure modes:2 
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• Fatigue – the degradation of the material due to normal usage over time. Minute cracks 
develop in the bearing surface and eventually progress to the surface where the material 
will separate. Also known as pitting, spalling, or flaking. 

• Wear – normal degradation caused by dirt and foreign particles causing abrasion of the 
contact surfaces over time resulting in alterations in the raceway and ball bearings. 

• Plastic deformation – alterations in the contact surfaces as a result of excessive loading 
while stationary or during small movements.  

• Corrosion – the degradation as a result of water or other contaminants in the lubrication of 
the bearing. Oxidation rust products are formed on the surfaces and interfere with the 
lubrication and rolling operation of the bearing. The subsequent abrasion results in wear, 
flaking, and spalling. 

• Brinelling – formation of regularly spaced indentations distributed over the raceway 
corresponding to the Hertzian contact area. Possible causes are static overloading or 
vibration and shock loads when in a stationary position. This can lead to spalling. 

• Lubrication – the lack of sufficient lubricant that leads to skidding, slip, increased friction, 
heat generation, and sticking. This can also anneal the bearing elements reducing their 
hardness and fatigue life. 

• Faulty installation – includes excessive preloading in either radial or axial directions, 
misalignment, tight fits, loose fits, or damage in the installation process. 

• Excessive loads – self explanatory. 

• Overheating – self explanatory. 

• Seizing – self explanatory. 

In most of these faults, a spall develops that indicates a fault in the bearing. Spalling of the 
bearing components provides mechanical responses that can be transduced by an accelerometer 
from a mechanical vibration into an electrical signal. The first occurrence of a spall indicates an 
incipient fault, but does not necessarily mean that it should be immediately replaced. The goal 
and hope is that one can detect this fault early enough in order to monitor the condition and 
replace component at a convenient time if possible.  

4. Bearing Life 

Engineers use the L10 or basic life model of a bearing, as part of the design process in selecting 
the appropriate bearing for the intended application. The International Organization for 
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Standardization (ISO) and American Bearing Manufacturers Association (ABMA) defines L10 as 
𝐿10 =  �𝐶

𝑃
�
𝑝
 for 1 million revolutions where 

𝐶 = 𝑏𝑎𝑠𝑖𝑐 𝑑𝑦𝑎𝑚𝑖𝑐 𝑙𝑜𝑎𝑑 𝑟𝑎𝑡𝑖𝑛𝑔, 𝑙𝑏 
𝑃 = 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑙𝑜𝑎𝑑, 𝑙𝑏 

𝑝 = 𝑙𝑖𝑓𝑒 − 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 

(𝑝 = 3 𝑓𝑜𝑟 𝑏𝑎𝑙𝑙 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑠;𝑎𝑛𝑑 𝑝 =  
10
3

 𝑓𝑜𝑟 𝑟𝑜𝑙𝑙𝑒𝑟 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑠) 

This basic life or L10 represents a life where 90% of a sufficiently large group of identical 
bearings can be expected to reach or exceed. This is a first step in predicting service life based on 
known operating conditions using a “model” based approach, but should be used cautionary. 
Other definitions of bearing life are summarized in Table 1. 

Table 1   Definition of bearing life3 

Life Type Definition 
Basic or L10 When the bearing has reached 90% of its life as defined 

as 1 million revolutions 
Median or average or Mean Time Between Failure 
(MTBF) 

About 5 times Basic life 

Service Life of under actual operating conditions before it fails 
or needs to be replaced 

Specification Similar to Basic life. Manufacturer’s requirement for 
bearing. 

 
It would be nice if the bearing life process was “linear.” The assumption could be made that all 
faults develop in the same way. In this instance, there would be a gradual degradation of the 
bearing condition and faults would occur similarly every time. This is not the real world.  

As listed above, there are many ways that a bearing may fail: cracks; true and false brinelling; 
rust and corrosion; etc. Bearing degradation has been studied for decades and a general model 
has been made to illustrate the life of a bearing through its 4 stages.4 One would expect to see a 
progression through each of its degradation stages, but that is not necessarily the case. It may 
actually skip some stages of its life. 

A noted by the Mobius Institute,4 as the bearing fails (depending upon the type of failure), there 
will be moments when cracks appear, pieces of metal flake away, and so on. At that moment, the 
vibration pattern and amplitude may change due to sharp edges to impact against the rolling 
elements and a piece of metal inside the bearing. The vibration measurement at that time may 
lead one to believe that the fault is quite severe. However, as the rolling elements continually 
strike the sharp surface, the edges will become rounded, and the metal pieces may be carried 
away by the lubricant. Therefore, the vibration will therefore change and lead one to think that 
the situations where the vibration appears to improve, but not really. 
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Per Barlov and Barkova,5 from decades of bearing evaluations, a bearing model has been 
developed that provides indicators of end of life at its 80% point onward. It has been proposed 
that bearing lifetime prediction be broken down into a 2-step process. A long-term life 
monitoring up to 20% of a bearing’s specific service life may be possible with low 
computational techniques and algorithms. Predicting the remaining service life at any point in 
time is very approximate and can be estimated only by introducing other computationally 
complex feature sets. 

5. Bearing Fault Stages 

Typically, rolling element bearings operate for approximately 80% of their useful life defect free. 
When failure occurs, there are generally 4 distinct stages of failure indicators. An early fault in 
the bearing does not necessarily mean that the bearing life is at hand. The bearing fault indicators 
or features are clearly detected in the frequency domain if the signal is sufficiently above the 
noise level. Figure 2 is an ideal depiction of frequency response at these various stages. In a 
bearing that is considered “healthy,” the frequency response should be Gaussian or flat. There 
may be some frequency components that correspond to the shaft rotation. In the real world, the 
healthy bearing will actually have some non-flat shape to its frequency response. The 4 stages 
represent the last 20% of bearing life and is not a linearly proportioned in terms of its remaining 
life cycle. The frequency response is divided into 4 zones or areas of interest in the frequency 
domain, and one should be aware that the frequency axis is not linearly drawn. The spectral 
content is just a snapshot in time and is not meant to imply constant features throughout those 
stages.  
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Fig. 2   Bearing life model (reproduced with permission from Mike Howard, STI Vibration 
Monitoring, Inc)6 

5.1 Stage 1 

Stage 1 represents 10% to 20% of the bearing’s remaining life. In Fig. 3 the bearing is still 
considered a good bearing. Failures in this stage normally occur below the surface so a visual 
examination would not be revealing. They normally begin 4 to 5 thousandths of an inch (0.1 to 
0.125 mm) below the surface of the raceway. There are many techniques developed by various 
vendors to detect the energy in this part of the frequency spectrum. Sub-surface cracking 
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generates very low amplitude stress waves in the 300 to 500 kHz range. A stress wave sensor 
would be used to detect the energy in this part of the frequency spectrum. Earliest indications of 
bearing problems appear in ultrasonic frequencies ranging from approximately 20–60 KHz. An 
approximate frequency span for the high frequency region is 2 to 120 KHz. Techniques that have 
been developed by commercial vendors are spectra emission energy (SEE), spike energy 
spectrum (gSE), high frequency detection (HFD), and shock pulse method (SPM):  

• SEE: 

○ Developed by SKF Condition Monitoring Group. 

○ Uses a high frequency acoustic emission sensor with an enveloping technique: 

○ The signal is bandpassed (250–350 KHz). 

○ The signal is filtered and enveloped. 

○ The signal is lowpassed to remove high frequency content. 

○ The signal is transformed into the frequency domain. 

• gSE: 

○ Developed by IRD. 

○ The signal is highpassed to remove low frequencies. 

○ The signal is rectified to capture an impact response. 

○ The signal is digitalized and lowpassed to obtain an envelope. 

○ The signal is transformed into the frequency domain. 

• HFD: 

○ Developed by SKF and CSI. 

○ The signal processed in the 5–60 KHz range. 

○ The signal uses a sensor resonant for amplifying the bearing defect. 

○ The signal is converted to a value that represents the level of the bearing defect 

• SPM: 

○ Developed by SPM Instruments. 

○ The signal is highpassed above 32 KHz to obtain the transient waveform. 

○ The signal is converted into a series of analog pulses corresponding to the transient 
condition. 
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Fig. 3   Stage 1 fault (reproduced with permission from David Stevens, IEng, AV Technology) 9 

5.2 Stage 2 

Stage 2 represents 5% to 10% of the bearing remaining life, as shown in Fig. 4. As the fault 
progresses microscopic pits (<40 microns) occur on the surface of the failed component. The 
defects are invisible to the naked eye and require magnification to observe the fault. As the fault 
continues to develop, the defects will evolve into spalls, cracks, flakes, etc. In the very early 
stages, the impacting created by the microscopic pits causes the bearing components to vibrate at 
their natural frequencies. These natural frequencies are in the 2 to 8 KHz range. The vibration 
pattern gradually changes as a result. The force of the impacts is greater, and periodicity is seen 
in the vibration measurements. Enveloping (demodulation) is also effective, with peaks visible at 
the bearing defect frequencies along with harmonics. Harmonics of the bearing defect 
frequencies may also be visible in the acceleration spectrum, and time waveform analysis may 
show signs of the fault. Depending on the data acquisition system period, it may have to be 
decreased to capture the fault progression growth. Bearing degradation is usually linear for a 
period to time and can be trended, but as the lifetime ends, it becomes nonlinear. At the end of 
stage 2, bearing defect frequencies appear, and sideband frequencies may also be present above 
and below the defect frequencies.4,7–10 
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Fig. 4   Stage 2 fault (reproduced with permission from David Stevens, IEng, AV Technology)9 

5.3 Stage 3 

Stage 3 represents 1% to 5% of the bearing remaining life, as shown in Fig. 5. Further failure 
progression causes the initial flaking, cracking and/or spalling that is commonly associated with 
rolling element bearing failures. The fault is visually apparent in the raceways and/or rolling 
elements, yet the damage is still confined to the bearing itself. These faults cause the signal to be 
strong enough to generate signals at the bearing defect frequencies. This is the point in failure 
where acceleration measurements can first positively identify a bearing defect.4,7–10 

 

Fig. 5   Stage 3 fault (reproduced with permission from David Stevens, IEng, AV Technology) 9 

 



 

10 

In Stage 3, the amplitude of the bearing defect frequency region increases and harmonics appear. 
At some point, other bearing defect frequencies are noticeable in both the bearing defect and 
natural frequency portions of the frequency domain. In addition to the increasing harmonics of 
the bearing fault frequencies, there are modulations or sidebands associated with the shaft 
rotating speed. The calculations for the bearing defect frequencies are for an ideal bearing. This 
may not necessarily be the situation for the bearing that one monitors; as the bearing degrades, 
the tolerances will change from their original state. These variations may have impact on the 
observed bearing defect frequencies resulting in slightly different frequencies from the ideal 
calculated bearing defect frequencies.4,7–10 

At this point, there is significant damage as indicated by the bearing defect frequency and the 
damage can easily be seen through a visual inspection of the bearing. The high frequency 
techniques such as SPM and gSE will trend upward. Depending on where the fault originates, the 
bearing defect frequencies will exhibit different characteristics. A summary is as follows:4,7–10 

• For an outer race bearing fault (horizontally oriented machine), there are harmonics at the 
ball pass frequency outer (BPFO). These harmonics are typically lower than the main or 
fundamental harmonic of the BPFO. As the bearing degrades, the amplitude of the 
harmonics will increase in amplitude to be greater the fundamental harmonic of the BPFO. 

• For an inner race bearing fault, the spectral frequency content also displays harmonics of 
the ball pass frequency inner (BPFI) along with sidebands of the shaft rotational speed. 
These sidebands are observed at the fundamental and harmonic frequencies. As the shaft 
rotates, the inner race fault will rise and fall as it moves through the loading zone of the 
bearing. The sidebands are created due to amplitude modification of the inner race bearing 
fault signal. This phenomenon is known as amplitude modulation (AM). 

• For a rolling element bearing fault, the fault may be noticed at the ball spin frequency 
(BSF) fundamental frequency. Since the fault of the rolling element will impact the inner 
and outer race per revolution of the shaft, the peak magnitude may be at twice the BSF 
frequency. In addition, there will be sidebands around the BSF harmonics, but the 
sidebands will be generated at the fundamental train frequency (FTF), also known as the 
cage frequency. The rolling element bearing fault travels through the bearing load zone 
with integration of the cage rotation. 

• Examination of the actual sensor time data exhibits the impacts and associated modulation 
in the time waveform. 

5.4 Stage 4 

Stage 4 represents 1% to 1 revolution of the bearing remaining life, as shown in Fig. 6. When 
multiple cracks, excessive flaking, or spalling occur, this is the 4th and final stage of bearing 
failure. Often, the rolling elements begin to deform and the cage may disintegrate or break. In 
this final stage, the usual suspects (bearing defect frequency, its harmonics, and sidebands) may 
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actually disappear. The shaft has more freedom to move around inside the bearing. Additionally 
the noise floor of the entire spectrum may increase since the generated frequencies will no longer 
occur at exactly the same time interval.4,7–10 

 

Fig. 6   Stage 4 fault (reproduced with permission from David Stevens, IEng, AV Technology) 9 

Numerous modulated frequencies and harmonics provide an indication that the defects are 
distributed around the bearing races and no longer localized. With the increase in degradation, 
the shaft vibrates more due to the degradation of the bearing internal clearances. This results in 
the increase in amplitude of the shaft rotation frequency. In addition, harmonics of the shaft 
rotational speed are produced. The bearing defect frequencies in both zones 2 and 3 start to 
decrease in amplitude and are replaced with a random broadband high frequency component. As 
it progresses toward the end of life, the amplitude of the high frequency noise and spike energy 
may decrease, but just prior to failure, the spike energy usually grows to excessive amplitudes. 
The following is summary of the progression in stage 4:4,7–10 

• The impact point is worn out, so that there are no sharp edges; this reduces the bearing 
defect frequencies in the component high frequency resonance region. 

• The bearing impact response does not show its periodicity. The bearing defect frequencies 
start to decrease in amplitude. 

• The clearance of the bearing increases. This results in an increase in the looseness of the 
shaft with the bearing housing. As a result, the shaft rotational speed and its harmonics 
increase and are noticeable. 

• The root mean square (RMS) value of the sensor time data increases. It is in this final stage 
that the time-domain feature displays sensitivity to the bearing fault. 
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6. Bearing Fault Frequency 

In this report, the terms “fault” and “defect” are used synonymously. The spectral characteristics 
of bearing faults have been derived and defined as shown in Table 2. There are 5 basic motions 
that can be used to describe the dynamics of a bearing movement and each motion generates a 
unique frequency response. The following definitions of these fault frequencies are provided:2, 12 

• Shaft rotational frequency (𝑓𝑅𝑂𝑇) – the rotational frequency of the rotor or shaft is 
fundamental to the movements of bearings. In a steady-state operating condition, the 
bearing outer raceway can be assumed to be stationary, while the inner raceway is rotating 
at the speed of the shaft. If the inner ring is fixed (stationary) while the outer rotates with 
the shaft, the minus sign must be changed to plus sign within the parentheses of Cage 
Frequency equation. 

• Fundamental Cage frequency (𝑓𝐹𝑇𝐹) – the rotational frequency of the cage of the bearing. 

• Ball Pass Outer Raceway frequency (𝑓𝐵𝑃𝐹𝑂) – this is defined as the rate at which the balls 
pass a point on the track of the outer raceway. 

• Ball Pass Inner Raceway frequency (𝑓𝐵𝑃𝐹𝐼) – this is defined as the rate at which the balls 
pass a point on the track of the inner raceway. 

• Ball Spin frequency (𝑓𝐵𝑆𝐹) – this is the rate of the rotation of a ball about its own axis. 

The equations to calculate these frequencies are based on characteristics of the bearing, as 
outlined in Table 2. Figure 7 defines each of the parameters. 

  



 

13 

Table 2   Bearing defect frequency equations2, 12 

Fault Type Fault Frequency 
FTF, also known as Cage 

𝑓𝐹𝑇𝐹 =  
𝑓𝑅𝑂𝑇

2
�1 −  

𝑑
𝐷

cos𝛼� 

BPFO 
𝑓𝐵𝑃𝐹𝑂 =  

𝑓𝑅𝑂𝑇
2

𝑁𝑏 �1 −  
𝑑
𝐷

cos𝛼� 

BPFI 
𝑓𝐵𝑃𝐹𝐼 =  

𝑓𝑅𝑂𝑇
2

𝑁𝑏 �1 + 
𝑑
𝐷

cos𝛼� 

BSF, also known as Roller 
𝑓𝐵𝑆𝐹 =  

𝑓𝑅𝑂𝑇
2

�
𝑑
𝐷
� �1 − �

𝑑
𝐷
�
2

𝑐𝑜𝑠2𝛼� 

𝑤ℎ𝑒𝑟𝑒 𝑓𝑅𝑂𝑇 = 𝑠ℎ𝑎𝑓𝑡 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 
𝛼 = 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑛𝑔𝑙𝑒 
𝐷 = 𝑃𝑖𝑡𝑐ℎ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

𝑑 = 𝑏𝑎𝑙𝑙 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 
𝑁𝑏 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑙𝑙 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑠 

 

 

Fig. 7   Bearing parameters2, 12 

The amplitude of the signal varies depending on not only the size of the defect, but the location 
of the defect in relation to the placement of the sensor, the tightness of the bearing flat, and the 
balance and/or alignment condition of the machine. If the fault in on the inner race, it will roll in 
and out of the load zone as the shaft rotates. When the impact occurs in the load zone, the 
strength of the signal is greater than when the fault occurs opposite the load zone. 

6.1 Understanding Bearing Fault Frequencies 

The following should be kept in mind when discussing bearing fault frequencies:7 
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1. The bearing fault frequencies are based on the kinematics of the bearing, i.e., the physical 
bearing geometry and rotational shaft speed.  

2. There are multiple sources of vibration in a complex machine of which the bearing is a 
subcomponent. For an accelerometer mounted very close to the bearing, the potential 
source is the shaft. Typically, the bearing fault frequencies are not integer multiplies of the 
rotating speed. 

3. Ideal conditions are assumed in the calculations. The shaft and bearing are rotating in 
uniformly. Operation of the internal bearing components (outer race, inner race, and ball 
elements) is pure rolling contact.  

4. Calculation of the bearing fault frequencies may not necessarily be exact. Differences 
between the calculated frequency and measured frequencies may be due to skidding versus 
rolling contact. Variation between the calculated and measured bearing fault frequencies 
could be in the order of 5% to 10% different. 

5. The magnitude of the bearing fault frequency does not necessarily indicate the severity of 
the fault, but the presence of a fault. 

There are “rule of thumbs” for the calculation of bearing fault frequencies when the bearing 
geometry is not known. These are summarized in Table 3. 

Table 3   Bearing defect frequency estimates12–14 

Fault Type Fault Frequency Estimate 
FTF, also known as Cage 0.4

𝑅𝑃𝑀
60

 

BPFO 0.4𝑁𝑏
𝑅𝑃𝑀

60
 

BPFI 0.6𝑁𝑏
𝑅𝑃𝑀

60
 

BSF, also known as Roller 0.2𝑁𝑏
𝑅𝑃𝑀

60
 

 
𝑤ℎ𝑒𝑟𝑒 𝑅𝑃𝑀 = 𝑠ℎ𝑎𝑓𝑡 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 

𝑁𝑏 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑙𝑙 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑠 =  
(𝐵𝑃𝐹𝑂 + 𝐵𝑃𝐹𝐼)

𝑅𝑃𝑀
60
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7. Data Acquisition Parameters 

The vibrational signature is transduced by an accelerometer into an electrical signature. This 
electrical signature is sampled by a data acquisition system, which digitizes the analog signal 
into a digital signal. The digital time signature extracted from vibration data is represented with 
N sampling points having amplitudes {𝑥1, 𝑥2, 𝑥3,⋯ , 𝑥𝑁}.  

7.1 Signal-to-Noise Ratio 

The vibrational signature is converted from the analog signature into a digital signature by means 
of an analog-to-digital (A/D) converter. There are many specifications for an A/D converter with 
2 of the important ones being the signal-to-noise ratio (SNR) and sampling rate. One of the A/D 
converter specifications is the number of bits. Quantization or amplitude resolution size is 
established by the number of bits. Typically, the larger number of bits provides a finer amplitude 
resolution of the vibrational signature. SNR is an important parameter in detecting and 
identifying a signal embedded in noise. An ideal A/D converter has a digitization error of 
± 1

2
 least significant bit (LSB). 

The SNR calculation of an A/D is summarized below. A maximum error of an ideal A/D 
converter is ± 1

2
 LSB or represented by "𝑞" below. "𝐵" is the number of bits of the A/D 

converter. The following is the summary of the relationship leading to SNR of an A/D 
converter:15 

• Full scale (FS) sinewave = v(t) = �𝑞2
𝐵

2
� sin(2𝜋𝑓𝑡) 

• RMS value of FS sinewave = 𝑞2
𝐵

2√2
 

• RMS value of quantization noise = 𝑞
√12

 

• SNR = 20 log10 �
𝑅𝑀𝑆 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐹𝑆 𝑆𝑖𝑛𝑒𝑤𝑎𝑣𝑒

𝑅𝑀𝑆 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑁𝑜𝑖𝑠𝑒
� = 20 log10 2𝐵 + 20 log10 �

3
2
 

• SNR = 6.02𝐵 + 1.76 (𝑑𝐵) 

7.2 Sampling Rate 

There are various factors that influence the selection of the sampling frequency. As explained in 
the bearing fault stages, the bearing fault can reside in different parts of the frequency domain 
and have different frequency characteristics as it degrades. One can unambiguously resolve a 
signal over the Nyquist band, which is defined up to 1

2
 of the sampling rate. As the bearing fault 

progresses, the frequency domain analysis becomes complex as the number of frequency 
components increases. Sampling to match the necessary criteria of the highest bearing fault 
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frequency is not adequate. There are other mechanical noises, which can make the bearing fault 
frequency difficult to detect until the fault degrades to the final stage of life. 

If detection of the bearing defect frequency is the goal, then it has been suggested that the 
optimum bandwidth of observing harmonics of the defect frequencies calculated should be 
limited to the 4th through the 10th orders. It was suggested that vibration harmonics with 
multiples of less than 4 may be present due to manufacturing tolerances – deviations between 
actual and ideal bearing rolling surfaces. The magnitude of harmonic components below the 4th 
order may be different by only 3–6 dB during the beginning and final stages of a bearing’s life. 
More accurate and responsive indicators are derived from the 4 to 10 times the bearing defective 
frequencies. Magnitudes of the bearing defect frequencies typically increase the initial stages of 
wear on these surfaces.5 

Sampling is the process by which the mechanical vibrational signature is converted into discrete 
time samples. The rate or sampling frequency (𝑓𝑠) determines the frequency content that the data 
acquisition system can provide unambiguous information about the maximum signal frequency. 
According to the Nyquist theorem, if a signal is perfectly band limited and sampled at 𝑓𝑠, one can 
identify a signal up to 1

2
𝑓𝑠 correctly. This does not mean that one can necessarily reproduce the 

time shape response accurately, which is very important if one were to detect the bearing defect 
fault in the bearing’s natural frequency region or in its resonant region.16 

7.3 Resonance 

The measured frequency response of a ball bearing is not necessarily flat over the frequency 
band. It is a complex, composite mixture from various sources such as the accelerometer itself, 
the mechanical structure that retains the ball bearing, and the actual bearing itself. Resonance of 
a complex system offers a benefit in detecting bearing fault frequencies. When a structure has 
resonance frequency regions, an input signal in that frequency is amplified. It is not obvious why 
a bearing fault frequency shows up in resonance frequency regions that many times higher in 
frequency than indicated by the bearing fault frequencies. At the beginning of the bearing fault, 
the time-domain signature appears as a series of impulse functions. From a Fourier transform of 
a series of ideal impulse functions, the resulting frequency transformation yields a series of 
frequencies spaced at the reciprocal of the impulse period, as shown in Fig. 8.  

 

Fig. 8   Impulse train and its frequency transformation 
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The lower frequency region of the bearing fault frequency is typically overwhelmed by other 
mechanical noise. It is not until late in the bearing fault stage that the bearing fault frequency can 
be easily detected in this frequency region. On the other hand, the noise above the bearing fault 
frequency tends to be lower than in the bearing fault frequency. If the impulsive signature 
happens to occupy a frequency resonance region, the signal will be amplified. Taking advantage 
of this combined SNR improvement may provide an early detection of a bearing fault. This 
should be done with caution as the bandwidth of the resonance may not be sufficiently wide 
enough to allow for a sufficient reproduction of the impulse nature of the bearing fault.  

8. Signal Processing Techniques 

Signal processing techniques are applied to the accelerometer signature to gain further insight 
into the interpretation of the measured data set. Analysis of the sensor data is very difficult in its 
raw form. Many signal processing techniques have been developed to process the data into a 
form more readily interpreted or provide a significant improvement of the SNR of the signal 
feature set. Signal processing techniques have been developed for a broad range of fields such as 
statistics, communications, digital signal processing, radar, and sonar applications. Many of these 
techniques are applicable to the analysis of the vibrational data from a bearing. These techniques 
are from the areas of statistical, time-domain, frequency-domain, and time-frequency domain 
analysis. The digital vibrational time signature extracted from vibration data is represented with 
N sampling points having amplitudes represented as {𝑥1, 𝑥2, 𝑥3,⋯ , 𝑥𝑁}. As a precursor to the 
data signature analysis, a data quality check should be performed to determine that the data 
acquisition system is functioning properly.  

8.1 Data Quality Check 

The following checks should be performed to ensure the quality of the data:17 

• The number of data points is consistent among the data files. 

• The monotonic increases or decreases in the overall signature file indicate a drifting 
condition in the data acquisition system. 

• An excessive noise amplitude increase from one file to the next file could indicate a data 
acquisition problem.  

• Amplitude saturation (clipping) of the vibrational signature creates nonlinearity in the 
signature that would make it harder to analyze. 

• Constant amplitude in the data file would indicate a malfunction in the data converter 
hardware. 
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• A shift in mean and standard deviation within the data file could possibly indicate a data 
acquisition problem. 

8.2 Statistical Analysis 

Statistical analysis is the mathematical science dealing with the analysis or interpretation of data. 
The data analyst uses a few straightforward statistical techniques as means of summarizing the 
collected data from the sensors. These statistical techniques are under the area of descriptive 
statistics, which is a methodology to condense the data in quantitative terms. 

Statistical techniques that are mainly used for alarm purposes in industrial plants are the 
statistical moments of order 2, 3, and 4. The probability density function (PDF) of the vibrational 
time series of a good bearing has a Gaussian distribution (also known as a Normal distribution), 
whereas a damaged bearing results in non-Gaussian distribution with dominant tails because of a 
relative increase in the number of high levels of acceleration. An important fact to remember 
about a Gaussian distribution is that the first 2 moments define the distribution. 

8.2.1 Histogram – Discrete Probability Density Function 

A histogram or a discrete PDF provides a tool to characterize the amplitude of the vibrational 
time series data into a form that provides a visualization profile that can relate to the statistical 
features. The calculation is as follows: 

• Let 𝑑 be the number of divisions that are needed to divide the range into; let ℎ𝑖with 
0 ≤ 𝑖 ≤ 𝑑 be the columns of the histogram, then 

ℎ𝑖 = �
1
𝑛
𝑟𝑖(𝑥𝑖),∀𝑖, 0 ≤ 𝑖 ≤ 𝑑

𝑛

𝑗=0

 

 𝑟𝑖(𝑥) = �1, 𝑖𝑓 𝑖�𝑚𝑎𝑥(𝑥𝑖)−𝑚𝑖𝑛(𝑥𝑖)�
𝑑

≤ 𝑥 < (𝐼+1)�𝑚𝑎𝑥(𝑥𝑖)−𝑚𝑖𝑛(𝑥𝑖)�
𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� (1) 

• The histogram upper bound (ℎ𝑈) and lower bound histogram (ℎ𝐿) are defined as 

ℎ𝑈 = 𝑚𝑎𝑥(𝑥𝑖) +
∆
2

 
     

ℎ𝐿 = 𝑚𝑎𝑥(𝑥𝑖) −
∆
2

 

 𝑤ℎ𝑒𝑟𝑒 ∆ = 𝑚𝑎𝑥(𝑥𝑖) −  𝑚𝑖𝑛 � 𝑥𝑖
[𝑛−1]� (2) 

8.2.2 Moments 

If these moments are calculated about the mean, they are called central statistical moments. The 
first and second moments are well known, being the mean and the variance, respectively. These 
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are analogous to the first and second area moments of inertia with the area shape defined by the 
PDF. The third moment is the termed skewness and the fourth moment is termed kurtosis. The 
general equation for the order of moment is as follows:2 

 𝑀𝑝 =  1
𝑁
∑ (𝑥𝑖 −  𝑥̅)𝑝𝑁
𝑖=1  (3) 

𝑤ℎ𝑒𝑟𝑒 𝑝 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 
𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑣𝑎𝑙𝑢𝑒 
𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑣𝑎𝑙𝑢𝑒 

𝑥̅ 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 

8.2.3 Mean 

Mean is the most common measure of a statistical distribution. In this case, mean is the 
arithmetic average for a set of measurements:2 

 𝑥̅ =  𝜇 = 1
𝑁
∑ 𝑥𝑖𝑁
𝑖=1  (4) 

8.2.4 Variance 

Variance is a measure of the dispersion of a waveform about its mean, and is called the second 
moment of the signal:2 
 𝜎2 =  1

𝑁
∑ (𝑥𝑖 −  𝑥̅)2𝑁
𝑖=1

 (5) 

8.2.5 Skewness 

Skewness is the statistical moment of the third order normalized by the standard deviation to the 
third power. This moment indicates the asymmetry of the PDF or degree of deviation from the 
symmetry of a distribution:2  

𝛾 =
𝑀3

𝜎3
 

𝛾 =  
1
𝑁∑ (𝑥𝑖 −  𝑥̅)3𝑁

𝑖=1

𝜎3
 

 𝛾 =  1
𝑁𝜎3

∑ (𝑥𝑖 −  𝑥̅)3𝑁
𝑖=1  (6) 

8.2.6 Kurtosis 

Kurtosis is the fourth statistical moment, normalized by the standard deviation to the fourth 
power. It is a measure of whether the data are peaked or flat relative to a normal distribution. 
Most background signals measured by a data acquisition are considered to have a normal 
distribution in amplitude. The normal distribution has a value of 3:2 

𝜅 =  
𝑀4

𝜎4
 



 

20 

𝜅 =  
1
𝑁∑ (𝑥𝑖 −  𝑥̅)4𝑁

𝑖=1

𝜎4
 

 𝜅 =  1
𝑁𝜎4

∑ (𝑥𝑖 −  𝑥̅)4𝑁
𝑖=1  (7) 

8.2.7 New Statistical Moments 

Typically, the variance and kurtosis have played an important role in evaluating bearing health 
monitoring. These features are even moments that relate to the spread of the distribution. Odd 
moments provide relationship between the mean and peak of the distribution. For the vibrational 
time series as it relates to a good bearing, the amplitude distribution will be very close to the 
ideal Gaussian distribution. In this case, all odd moments will be 0 and the even moments take 
on finite values. For the case of a good health bearing, the skewness moment is 0. This limits the 
importance of this feature for monitoring, but with transformations, other statistical moments can 
be formulated that would be useful features to monitor in a both normal and degraded state.  

If the mean value is removed or subtracted from the data, the general equation for the moment 
𝑀𝑝 = 1

𝑁
∑ (𝑥𝑖 − 𝑥̅)𝑝𝑁
𝑖=1  can be rewritten as  

 𝑀𝑛 = 1
𝑁
∑ (𝑥𝑖)𝛽𝑁
𝑖=1  ,𝛽 ≥ 1 (8) 

In addition, 2 other transformations can be applied to convert the vibrational time series into 
positive values, such as absolute or square value. Now let 

 𝑌 =  |𝑋| 𝑜𝑟 𝑌 =  𝑋2 (11) 

then 
 (𝑀𝑛)𝑟 =  1

𝑁
∑ (𝑦𝑖)𝛽 ,𝛽𝑁
𝑖=1  ≥ 1 (12) 

where the subscript 𝑟 represents the moment of the unidirectional data about the origin.  

Let the equality 𝑟 = 𝑎 represent the vibrational time series data by getting its absolute value, and 
𝑟 = 𝑠 represent the square value, respectively. Consequently, the new normalized central 
statistical moments can be defined as 

 𝑁𝑀𝑟
𝛽 =  

1
𝑁
∑ (𝑦𝑖)𝛽𝑁
𝑖=1

�1𝑁∑ 𝑦𝑖𝑁
𝑖=1 �

𝛽  ,𝛽 ≥ 1 (13) 

New normalized statistical moments can be formulated as features for bearing condition 
monitoring for theses transformed vibrational time series. Four normalized central statistical 
moments are given: 

Normalized second moment absolute 𝑵𝑴𝒂
𝟐 (namely A2) 

 𝑁𝑀𝑎
2 =  

1
𝑁
∑ (𝑦𝑖)2𝑁
𝑖=1

�1𝑁∑ 𝑦𝑖𝑁
𝑖=1 �

2 =  
1
𝑁
∑ |𝑥𝑖|2𝑁
𝑖=1

�1𝑁∑ |𝑥𝑖|𝑁
𝑖=1 �

2 =
1
𝑁
∑ |𝑥𝑖|2𝑁
𝑖=1

�1𝑁∑ |𝑥𝑖|𝑁
𝑖=1 �

2 (14) 
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Normalized third moment absolute 𝑵𝑴𝒂
𝟑 (namely A3) 

 𝑁𝑀𝑎
3 =  

1
𝑁
∑ (𝑦𝑖)3𝑁
𝑖=1

�1𝑁∑ 𝑦𝑖𝑁
𝑖=1 �

3 =  
1
𝑁
∑ |𝑥𝑖|3𝑁
𝑖=1

�1𝑁∑ |𝑥𝑖|𝑁
𝑖=1 �

3 =
1
𝑁
∑ |𝑥𝑖|3𝑁
𝑖=1

�1𝑁∑ |𝑥𝑖|𝑁
𝑖=1 �

3 (15) 

Normalized 3/2 moment squared (𝐍𝐌𝐬

𝟑
𝟐� ) 

 𝑁𝑀𝑠
3
2� =  

1
𝑁
∑ (𝑦𝑖)

3
2�𝑁

𝑖=1

�1𝑁∑ 𝑦𝑖𝑁
𝑖=1 �

3
2�

=  
1
𝑁
∑ �(𝑥𝑖)2�

3
2�𝑁

𝑖=1

�1𝑁∑ (𝑥𝑖)2𝑁
𝑖=1 �

3
2�

=
1
𝑁
∑ (𝑥𝑖)3𝑁
𝑖=1

𝜎3
 (16) 

Normalized second moment squared (𝐍𝐌𝐬
𝟐) 

 𝑁𝑀𝑠
2 =  

1
𝑁
∑ (𝑦𝑖)2𝑁
𝑖=1

�1𝑁∑ 𝑦𝑖𝑁
𝑖=1 �

2 =  
1
𝑁
∑ �(𝑥𝑖)2�

2𝑁
𝑖=1

�1𝑁∑ (𝑥𝑖)2𝑁
𝑖=1 �

2 =
1
𝑁
∑ (𝑥𝑖)4𝑁
𝑖=1

𝜎4
 (17) 

8.3 Time-Domain Analysis 

Time-domain analysis is simpler than frequency-domain analysis and less computationally 
intensive. Various features can be formulated from the time series waveform to characterize its 
overall shape. It is hoped that one can differentiate a good bearing from a defective one based on 
evaluating the differences in feature values. These features are typical waveform characterization 
or features that been developed throughout various studies on the degradation of the ball 
bearings.  

8.3.1 RMS 

The RMS is related to the energy of the signal. The presence of defects are directly detected by 
the increase in vibration level:18,19 

 𝑅𝑀𝑆 =  �1
𝑁
∑ (𝑥𝑖)2𝑁
𝑖=1  (18) 

8.3.2 Maximum Amplitude Value 

Maximum amplitude value indicates the severity of a bearing defect:19 

𝑚𝑎𝑥(𝑥𝑖) 

8.3.3 Minimum Amplitude Value 

The minimum amplitude value is designated as  

min (𝑥𝑖) 

8.3.4 Peak Value 

The peak value is 

 𝑃𝑒𝑎𝑘 =  1
2

{𝑚𝑎𝑥(𝑥𝑖) −𝑚𝑖𝑛(𝑥𝑖)} (19) 
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8.3.5 Peak to Peak 

The peak to peak value is  

 𝑃𝑒𝑎𝑘 𝑡𝑜 𝑃𝑒𝑎𝑘 =  {𝑚𝑎𝑥(𝑥𝑖) −𝑚𝑖𝑛(𝑥𝑖)} (20) 

8.3.6 Crest Factor 

Crest factor is a measure of how much impacting is occurring in the time waveform. Impacting 
in the time waveform may indicate rolling element wear or cavitation.19 This feature is sensitive 
to the incipient spall, but not very effective as the failure develops. As the fault develops, the 
RMS value increases while the peak value remains constant. So in this case of bearing 
degradation, the crest factor will decrease over time from the incipient fault:  

 𝐶𝑟𝑒𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =  𝑃𝑒𝑎𝑘 𝐿𝑒𝑣𝑒𝑙
𝑅𝑀𝑆

 (21) 

8.3.7 K Factor 

As stated previously, the peak value is not a linear function of the fault degradation. The peak 
value will increase slowly or decrease from the time of the incipient fault; this corresponds to a 
wearing away of the sharpness of the spall and increase in the spall size. This will result in the 
increase of the RMS value of the signal. In this case, either an increase in RMS or peak value 
will result in an increase of the K factor feature:5   

 𝐾 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑃𝑒𝑎𝑘 𝑥 𝑅𝑀𝑆 (21) 

8.3.8 Square Mean Root Absolute 

The following is the square mean root absolute: 

�
1
𝑁
��|𝑥𝑖|
𝑁

𝑖=1

�

2

 

8.3.9 Mean Absolute 

The following is the mean absolute: 

 
1
𝑁
�|𝑥𝑖|
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8.3.10 Weighted SSR Absolute 

The following is the weighted SSR absolute: 
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8.3.11 Clearance Factor 

The clearance factor is similar to kurtosis, but is robust to operating conditions. It is also 
sensitive to early fatigue spalling. 

 𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒
1
𝑁�∑ �|𝑥𝑖|𝑁

𝑖=1 �
2 =  𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒

𝑆𝑞𝑢𝑎𝑟𝑒 𝑚𝑒𝑎𝑛 𝑟𝑜𝑜𝑡 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒
 (22) 

8.3.12 Impulse Factor 

The impulse factor is sensitive to early fatigue spalling and is very similar to crest factor feature: 

 𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒
1
𝑁
∑ |𝑥𝑖|𝑁
𝑖=1

=  𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒
𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒

 (23) 

8.3.13 Shape Factor 

The following is the shape factor equation: 

  𝑅𝑀𝑆 𝑣𝑎𝑙𝑢𝑒
1
𝑁
∑ |𝑥𝑖|𝑁
𝑖=1

=  𝑅𝑀𝑆 𝑣𝑎𝑙𝑢𝑒
𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒

 (24) 

8.3.14 Shannon Entropy 

Shannon entropy is one of the important metrics in information theory. Claude F Shannon 
introduced his concept in the paper A Mathematical Theory of Communication (1948). This 
entropy provides a measure of the amount of randomness of the measured vibrational data. 
Entropy estimation is a two stage process; first, a histogram is estimated, and then the entropy is 
calculated. The Shannon entropy is calculated using following formula: 

 𝑆(𝑋) =  ∑ ℎ(𝑥𝑖)𝐼(𝑥𝑖)𝑛
𝑖=1 =  ∑ ℎ(𝑥𝑖)𝑛

𝑖=1 log𝑏
1

ℎ(𝑥𝑖)
= −∑ ℎ(𝑥𝑖)𝑛

𝑖=1 log𝑏 ℎ(𝑥𝑖) (25) 

8.3.15 Normal Negative Log Likelihood  

The following is the normal negative log likelihood: 

−�𝑙𝑜𝑔 �
1

𝜎√2𝜋
𝑒𝑥𝑝 �

−[(𝑥𝑖 − 𝜇)2]
2𝜎2

��
𝑁

𝑖=1

 

8.4 Frequency-Domain Analysis 

In this process, the time series data are transformed into sums of simpler trigonometric functions 
such as the sine and cosine functions. Through this conversion or transformation, the detection of 
faults is generally easier since it improves the SNR of the data and the fault signature tends to be 
more visually observable. Signals, in general, can be divided into two classes: stationary and 
non-stationary. Signals whose average properties do not change with time and that are 
independent of the particular sample record used to determine them are said to be stationary. 
Non-stationary signals are those whose average properties change with time.20 
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Stationary signals are characterized by time-invariant statistical properties, such as the mean 
value or autocorrelation function. Analysis of stationary signals has largely been based on well-
known spectral techniques such as the Fourier transform, which identifies the constituent 
frequency components within the signal.21 Traditional data analysis methods such as Fourier 
analysis are all based on linear and stationary assumptions, i.e., the signal to be processed must 
be linear and temporally stationary.22 In frequency domain analysis, the mathematical process is 
to transform the time measurements into the frequency domain, where it may be easier to analyze 
and interpret the sensor measurements. This transformation of the vibrational time series into the 
frequency domain along with the knowledge of the bearing fault frequency and its progression 
through the fault stages provide a power interpretation of frequency spectral data. 

8.4.1 Fast Fourier Transform 

The fast Fourier transform (FFT) is an efficient algorithm for calculating the discrete Fourier 
transform. A discrete Fourier transform converts a series of time discrete measurements into its 
components in the frequency domain. There are many forms for implementing FFT algorithms. 
The FFT provides the same result as the discrete Fourier transform, but with a main difference in 
the speed of the overall calculation. For a large size of data measurements, this can reduce the 
computational time by several orders of magnitude. 

 𝑋𝑘 =  ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘𝑛𝑁𝑁−1

𝑛=0  (26) 

𝑘 = 0, … ,𝑁 − 1 

8.4.2 Frequency Resolution (FFT) 

The vibrational signature in the time domain is typically transformed into the frequency domain 
through the use of the processing algorithm known as the FFT. Since there is the possibility of 
different bearing fault frequencies, which are dependent on where the fault actually occurs, one 
must have a frequency resolution that can discriminate these fault frequencies from other 
mechanical-related signals. As bearing degradation continues after the incipient fault, the 
frequency response becomes more complex and requires a finer frequency resolution if one 
needs to identify the associated relationship of the frequency to the actual fault mechanism. As 
shown in Fig. 9, the FFT provides a frequency resolution 𝑓𝑠

𝑁
 . So in order to get a frequency 

resolution in the order of a few Hz, the sampling rate and number of samples need to very high:23 

o Sampling Frequency 𝑓𝑠 

o Number of Points in FFT, N 

o Frequency Resolution = 𝑓𝑠
𝑁

 

o FFT Processing Gain = 10 log10 �
𝑁
2
� 
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Fig. 9   FFT resolution and processing gain 

8.4.3 FFT Processing Gain 

The detectability of the bearing’s defect frequency is the SNR of the bearing’s defect frequency 
to the overall noise level. One of the advantages of the FFT is the FFT processing gain, which 
provides an improvement in the SNR as a function of the data file size N. For a very large 
number of data sample in a data file, there is a very sizeable improvement obtained, as shown in 
Fig. 9. So the effective SNR is improved over what was stated in Section 7.1. The SNR with FFT 
processing gain is as follows:23 

   SNR = 6.02𝐵 + 1.76 + 10 log10 �
𝑁
2
� (𝑑𝐵) (27) 

8.4.4 Hilbert Transform 

The Hilbert transform is defined as follows for a continuous signal: 

 𝐻[𝑥(𝑡)] =  𝑥�(𝑡) = 𝜋−1 ∫ 𝑥(𝜏)
𝑡− 𝜏

∞
−∞ 𝑑𝜏 (28) 

The application of this transform to vibrational data provides some additional information about 
amplitude, instantaneous phase, and frequency of vibrations.24 

The mathematical term “analytic” is applied to 𝑥�(𝑡) because it is an analytic function of a 
continuous complex variable. A formal analytic signal is a complex-valued continuous-time 
function with a Fourier transform that vanishes for negative frequencies. In the discrete domain, 
the analytic-like discrete-time signal can be generated with some similar properties as the 
continuous-time analytic signal in the signal processing sense, but it is not an analytic function in 
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the mathematical sense. A technique for creating a Hilbert transform of a discrete time sequence 
is as follows:25 

• Compute the N-point transform using an FFT of N real data samples 

 𝑋𝑘 =  ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘𝑛𝑁𝑁−1

𝑛=0  (28) 

• Form the N point 1-sided, discrete-time “analytic” signal transform 

 𝑍[𝑚] =  

⎩
⎪
⎨

⎪
⎧

𝑋[0],𝑓𝑜𝑟 𝑚 = 0
2𝑋[𝑚],𝑓𝑜𝑟 1 ≤ 𝑚 ≤  𝑁

2
− 1

𝑋 �𝑁
2
� ,𝑓𝑜𝑟 𝑚 =  𝑁

𝑠

0, 𝑓𝑜𝑟 𝑁
2

+  1 ≤ 𝑚 ≤ 𝑁 − 1

� (29) 

• Compute, using an N-point inverse FFT 

 𝑋[𝑛] =  1
𝑁𝑇
∑ 𝑍[𝑚]𝑒

𝑗2𝜋𝑚𝑛
𝑁𝑁−1

𝑚=0  (30) 

8.5 Envelope Analysis 

The envelope of the waveform results in an integral curve that represents the overall shape of the 
signal. It may be constant (a waveform is a continuous harmonic) or may vary with time.  

The form or shape of the variation of the instantaneous amplitude is called a wave envelope. In 
using the Hilbert transform, the rapid oscillations can be removed from the amplitude-modulated 
signal to produce an outline shape of the slow envelope alone. This is illustrated in Fig. 10. For a 
healthy bearing, the vibrational time amplitude waveform is considered a Gaussian function that 
is “white.” Its envelope should be fairly flat and the frequency spectrum somewhat constant. 
When a fault occurs, there is an impact response each time the ball bearing hits the fault. In this 
illustration, the fault is located on the outer race. An envelope of the overall vibrational signature 
is shown in red with the frequency spectrum. In this case, the frequency spectrum clearly shows 
the bearing defect frequency and its harmonic.  
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Fig. 10   Envelope spectrum of good and faulted bearing (reproduced with permission from Pruftechnick AG)26 

The envelopes of different types of bearing faults do not result in the same overall shape pattern. 
Figure 11 is an idealized illustration of the vibrational time series and the envelope of the 
different bearing faults. From this illustration, it should be clear that the pattern of the outer race 
fault vibrational time waveform should be the easiest to detect since it is quite repetitive. In the 
case of the inner race fault, the waveform has impacts that occur at the inverse of BPFI, but it is 
also modulated by the shaft speed. A frequency analysis of these waveforms will show 
corresponding frequencies that correlate to the correspond fault, respectively. Only the outer race 
fault will show frequency spectral lines that relate to 1 fault frequency. The other types of faults 
will show the bearing defect frequency with multiple spectral lines corresponding to the 
particular fault and their mixing products of the envelope curve. In practical rolling bearing 
applications, the frequencies of the cyclic impacts vary in a random manner, due to slip, varying 
speeds, and varying load angle. Consequently, the inconsistency in the cyclic impacts may 
complicate the detection of the nominal bearing defect frequencies from the raw vibration 
spectrum. However, the envelope spectrum or its square can be successfully used for indicating 
the defect frequencies even with random slip. 
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Fig. 11   Bearing faults and envelope waveforms (reproduced with permission from SAGE Publications, Ltd)27 

8.5.1 Modulation of Fault Frequencies 

The variation of the waveform is the result of load modulation. Strength of the impact from 
rolling over a fault is a function of the bearing radial load. If a fault is located on the stationary 
component of the bearing, the fault will encounter the same impact force as each ball bearing 
rolls over the fault. Therefore, all the impact responses will be equal in amplitude. If the fault is 
not located on a stationary component, then the fault will encounter a varying impact force that is 
repetitive with the rotation speed. This will result in the vibrational impact responses being 
amplitude modulated at the fault frequency with the rotational speed. Which bearing fault 
frequency gets modulated by the rotation speed will depend on which race is stationary. Only the 
non-stationary race fault will get modulated by the rotation speed. Similar modulation will occur 
with a ball fault, being amplitude modulated by the cage and rotation speed.28 

In terms of bearing analysis, the signal processing of enveloping and amplitude demodulation 
describe very similar process. As discussed previously, the process is to remove high amplitude, 
low mechanical vibration, which masks the low bearing fault vibration, and translate the high 
frequency resonant impact response into a low frequency signal so that time and frequency 
analysis can be performed. The envelope spectrum will contain noise if the bearing is healthy 
and spectral lines at the corresponding bearing defect frequency if there is a fault. These lines 
will increase as it progresses through the bearing fault stages, but at the end, the bearing fault 
frequencies will decrease with increasing noise in the envelope spectrum.4 
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8.5.2 Quadratic Phase Coupling (QPC) 

For a linear system, the frequency of an output signal will be the same as the input signal. When 
2 input sinusoids of different frequencies are passed through a linear system, the output 
frequencies are preserved. If these same 2 sinusoids are passed through a nonlinear system, the 
output signal will have components at the sum and difference frequencies of the 2 sinusoids as 
well. The term quadratic phase coupling (QPC) is used to describe the resultant components for 
this nonlinear mixing process, which has quadratically coupled frequency pairs. 

Initially, the bearing fault frequency will show up as a single harmonic. As the fault progresses, 
harmonics will relate to the fault. For example, as an outer race fault grows, the fault will show 
at 𝑓𝐵𝑃𝐹𝑂 , 2𝑓𝐵𝑃𝐹𝑂 , 3𝑓𝐵𝑃𝐹𝑂 ,⋯. As the fault progression continues, there will be a mixing of this 
fault with other fault frequencies related to the bearing. For example, the outer and inner race 
fault frequencies might show up, i.e., 𝑓𝐵𝑃𝐹𝑂 ± 𝑓𝐵𝑃𝐹𝐼. A general expression for these frequencies 
is as follows: 

𝑚𝑓1 ± 𝑛𝑓2 
𝑤ℎ𝑒𝑟𝑒 𝑛 = 1,2,3 …  𝑎𝑛𝑑 𝑚 = 1,2,3, … 
𝑓1 =  𝑓𝐵𝑃𝐹𝑂 ,𝑓𝐵𝑃𝐹𝐼 ,𝑓𝐵𝑆𝑃 ,𝑓𝐹𝑇𝐹 ,𝑓𝑅𝑂𝑇 
𝑓2 =  𝑓𝐵𝑃𝐹𝑂 ,𝑓𝐵𝑃𝐹𝐼 ,𝑓𝐵𝑆𝑃 ,𝑓𝐹𝑇𝐹 , 𝑓𝑅𝑂𝑇 

Figure 12 illustrates the complex nature of the spectral mixing of the bearing fault frequencies. 
This situation could possibly exhibit at some point late in the degradation progression. In this 
figure, the actual frequencies are not important. The important concept is the various spectral 
lines and their relationship. There are many combinations that could be generated and some 
terms may overlap or be located very close to other terms.  
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Fig. 12   Complex mixing of bearing fault frequencies 

8.6 Higher-Order Spectra Analysis 

The vibrational signal from the accelerometer has a Gaussian distributed noise for a healthy 
bearing. As stated, a Gaussian signal can be characterized by its mean and variance. Moreover, 
the first-order cumulant of a Gaussian process is equal to the mean, the second-order cumulant to 
the variance, and all higher-order cumulants are identically 0.  

The power spectrum is a member of the higher-order spectral class known as the second-order 
spectrum. In the power spectrum, the transformation of the vibrational time series treats the 
conversion as a superposition of statistically uncorrelated harmonic components. In the case of a 
Gaussian process, this power spectrum is sufficient to describe its characteristics. As the bearing 
degrades, the vibrational signal undergoes a nonlinear process. As this continues, the detection of 
nonlinearities becomes important in determining the bearing’s health status. The second-order 
statistical methods are not sufficient for the analysis. The phase relations between frequency 
components are not taken into account by the statistical measures up to order 2.  

The higher-order spectra (HOS) technique has been developed fairly recently to account for the 
nonlinearity and phase couplings that occur in non-Gaussian and nonlinear systems. In the 
literature, HOS is also known as “higher order statistics.” For a linear system, the frequency of 
an output signal is the same as the input signal. When 2 input sinusoids of different frequencies 
are passed through a linear system, the output frequencies are preserved. If these same 2 
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sinusoids are passed through a nonlinear system, the output signal will have components at the 
sum and difference frequencies of the 2 sinusoids as well. Thus, QPC is used to describe the 
resultant components for this nonlinear mixing process that has quadratically coupled frequency 
pairs. 

8.6.1 Bispectrum 

QPC provides a powerful indicator in nonlinear system identification. In our case, detection of 
the QPC is a very good indicator that the bearing is in a fault state. Detection of the QPC is 
achieved through the use of HOS (order greater than 2). HOS use the higher-order cumulants of 
the data. Bispectrum is known as the third-order spectrum and trispectrum used to label the 
fourth order.  

A Fourier transform of a real discrete zero-mean process 𝑥𝑛 is given by 

 𝑋𝑘 =  ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘𝑛𝑁𝑁−1

𝑛=0  (31) 

The power spectrum, (𝑘), can be defined of from the discrete Fourier transform as follows: 

 𝑃(𝑘) = 𝐸[𝑋(𝑘)𝑋∗(𝑘)] (32) 

As such, the power spectrum decomposes the vibrational power over the frequency domain, i.e., 
the signal second moment. Since this operates on real data, the power spectrum has no phase 
information.  

The definition of the bispectrum is as follows: 

 𝐵(𝑘, 𝑙) = 𝐸[𝑋(𝑘)𝑋(𝑙)𝑋∗(𝑘 + 𝑙)] (33) 

Similar to the power spectrum, the bispectrum is related to the skewness of the vibrational signal. 
It decomposes the vibrational signal third moment over the frequency domain. This provides a 
tool to evaluate the non-symmetric nonlinearities of the signal. If the vibrational signal is not 
skewed, the bispectrum will be 0.  

There are 2 methods of estimating the bispectrum: indirect and direct. The following are the 
steps for the direct method: 

1. Divide the finite data set of length N into K (possibly overlapping) segments of M samples 
each, i.e., N ≥ KM. Detrend (i.e., subtract the mean value of each segment and 
appropriately window the data to provide some control over the effects of spectral leakage). 
If necessary, delete the last data points or add zeros to obtain a convenient length M = 2𝑛 
for FFT. 

2. Generate the FFT coefficients for each data segment: 

 𝑋𝑖(𝑘) = 1
𝑀

 ∑ 𝑥𝑖(𝑙)𝑒
−𝑗2𝜋𝑘𝑀 𝑙𝑀−1

𝑙=0  (34) 
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3. Form the raw spectral estimated based on the FFT coefficients: 

 𝑆3𝑥,𝚤� (𝑘, 𝑙) =  𝑋𝑖(𝑘)𝑋𝑖(𝑙)𝑋𝑖∗(𝑘 + 𝑙) (35) 

4. Compute the segment-averaged estimate of the bispectrum of the given data from the 
averages over K pieces. 

 𝐵(𝑘, 𝑙) =  1
𝐾
∑ 𝑆3𝑥,𝚤� (𝑘, 𝑙)𝐾
𝑖=1  (36) 

8.6.2 Trispectrum 

The definition of the trispectrum is as follows: 

 𝑇(𝑘, 𝑙,𝑚) = 𝐸[𝑋(𝑘)𝑋(𝑙)𝑋(𝑚)𝑋∗(𝑘 + 𝑙 + 𝑚)] (37) 

In a similar way to the power spectrum and bispectrum, the trispectrum decomposes the 
vibrational signal as the vibrational signal’s kurtosis over the frequency domain. In this case, the 
trispectrum is a tool for detecting symmetric nonlinearities. 

8.6.3 Bicoherence and Tricoherence   

A problem with the bispectrum is that the resulting transformation has a variance that is 
proportional to the cubic product of the power spectra. In this case, the second-order properties 
may have a very significant influence in the bispectrum and provide improper interpretations. It 
is for this reason that the bispectrum is normalized. This normalization process results in the 
bicoherence. Since the bicoherence is independent of the energy or amplitude of the signal, it can 
be used as convenient test statistics for the detection of non-Gaussian, nonlinear, and coupled 
processes:29–32 

 𝑏2(𝑘, 𝑙) =  |𝐵(𝑘,𝑙)|2

𝐸[|𝑋(𝑘)𝑋(𝑙)|2]𝐸[𝑋(𝑘+𝑙)2] (38) 

This normalization process is also applied to the trispectrum yielding the tricoherence concept. 

 𝑡2(𝑘, 𝑙,𝑚) =  |𝑇(𝑘,𝑙,𝑚)|2

𝐸[|𝑋(𝑘)𝑋(𝑙)𝑋(𝑚)|2]𝐸[|𝑋(𝑘+𝑙+𝑚)|2] (39) 

The bicoherence and tricoherence can be estimated as follows: 

  𝑏�2(𝑘, 𝑙) =  
�∑ 𝑋𝑗(𝑘)𝑋𝑗(𝑙)𝑋𝑗∗(𝑘+𝑙)𝑁

𝑗=1 �
2

∑ �𝑋𝑗(𝑘)𝑋𝑗(𝑙)�
2𝑁

𝑗=1 ∑ �𝑋𝑗(𝑘+𝑙)�
2𝑁

𝑗=1
 (40) 

  𝑡̂2(𝑘, 𝑙,𝑚) =  
�∑ 𝑋𝑗(𝑘)𝑋𝑗(𝑙)𝑋𝑗(𝑚)𝑋𝑗∗(𝑘+𝑙+𝑚)𝑁

𝑗=1 �
2

∑ �𝑋𝑗(𝑘)𝑋𝑗(𝑙)𝑋𝑗(𝑚)�2𝑁
𝑗=1 ∑ �𝑋𝑗(𝑘+𝑙+𝑚)�2𝑁

𝑗=1
 (41) 

8.7 Time-Frequency Analysis 

Time-frequency analysis is an attempt to overcome some of the shortcomings of Fourier 
analysis. Time-frequency analysis is a series of signal processing techniques for analyzing 
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signals that are transient in nature or non-stationary. The statistical properties of a non-stationary 
signal change over time. The time-averaging properties of a non-stationary signal change over 
time, thus making the time-averaging approach adopted in the Fourier transform ineffective. 
Time-frequency analysis techniques are methods for analyzing nonlinear and non-stationary 
data.33 

Time frequency techniques decompose 1-dimensional time-series signals into a 2-dimensional 
(2-D) plane by exposing the time-dependent variations of characteristic frequencies within the 
signal, thus presenting a valid and effective tool for non-stationary signal analysis.21 

There are many techniques that have been developed to perform time-frequency analysis. 
Unfortunately, these techniques generate artifacts in cross-term products and the user must be 
aware of how the application of the particular technique will contaminate the results. All the 
methods are designed to modify the global representation of the Fourier analysis, but they all are 
limited in one way or another. Necessary conditions for the basis to represent a nonlinear and 
non-stationary time series:33 

1. complete – guarantees the degree of precision of the expansion  

2. orthogonal – guarantees positivity of energy and avoids leakage 

3. local – crucial for non-stationarity, for in such data there is no time scale 

4. adaptive – adapting to the local variations of the data can allow the decomposition to fully 
account for the underlying physics.  

The following is a list of time-frequency analysis that is described: 

1. Short-time Fourier transform (STFT) 

2. Wavelet 

3. Cohen 

4. Wigner-Ville 

5. Choi-Williams 

6. Zhao-Atlas-Marks 

7. Hilbert-Huang 

8.7.1 STFT 

The STFT is the windowing or dividing of the raw data into frames and applying the Fourier 
transform. This division can be overlapping or non-overlapping data. It is an attempt to analyze 
the non-stationary characteristics of the signal. The resulting 2-D signal is typically visually 
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displayed as a spectrogram, which represents the magnitude squared of the STFT or power 
variation in the signal over time.  

 𝑆𝑇𝐹𝑇(𝜏,𝑓) =  ∫𝑥(𝑡)𝑔(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 (42) 

The time-frequency decomposition of the signal is generated with a constant frequency and time 
resolution. A 2-D and 3-dimensional (3-D) image of the STFT are illustrated in Fig. 13. 

 

Fig. 13   STFT (reproduced with permission from Prof. Dr. Ir. Maarten Steinbuch, Eindhoven University of 
Technology)34 

8.7.2 Wavelet Transform 

The wavelet transform is a technique similar to the STFT. This technique decomposes the data 
with various functions that are scaled in amplitude and time. Wavelet transform is a windowing 
technique with variable sized regions The terms “dilations and translations” are the processes 
applied to the basis function or mother wavelet as it is scaled in width and location as applied to 
the data set. As with the STFT, it provides the advantage of temporal resolution in addition to the 
frequency information. Wavelet analysis allows use of long time intervals where more precise 
low frequency information is needed and shorter regions where high frequency information is 
needed:35 

 𝑊𝑇(𝑠, 𝜏) =  ∫ 𝑥(𝑡)𝜓𝑠,𝜏
∗ (𝑡)𝑑𝑡 (43) 

 𝜓𝑠,𝜏(𝑡) =  1
√𝑠
𝜓 �𝑡−𝜏

𝑠
� (44) 

𝑤ℎ𝑒𝑟𝑒 𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝜏 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝜓𝑠,𝜏
∗ (𝑡) 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑡ℎ𝑒𝑟 𝑤𝑎𝑣𝑒𝑙𝑒𝑡 

For the discrete case, the discrete wavelet (DWT) is written as 
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𝜓 �𝑡−𝑘𝜏0𝑠0

𝑗

𝑠0
𝑗 � (45) 

There are various selections of mother wavelets to choose from and performance is dependent on 
the correlation of the mother wavelet to the signal characteristics. In the case of the DWT, the 
decomposition is performed through the use of filter banks and a down-sampling process. A 2-D 
and 3-D image of the wavelet transform is illustrated in Fig. 14. Note that the frequency and time 
resolution are not constant. 

 
Fig. 14   Wavelet transform (reproduced with permission from Prof. Dr. Ir. Maarten Steinbuch, Eindhoven 

University of Technology)34 

8.7.3 Cohen 

This is a general class of processing that performs analysis in the time and frequency domains. It 
is an attempt to overcome some of the problems associated with the STFT. It uses bilinear 
transformation to transform measurement data into the frequency domain while accounting for 
the non-stationary aspect in the measured data set. The Wigner-Ville, Choi-Williams, and Zhao-
Atlas-Marks are special implementations of the Cohen technique: 

 𝐶𝑥(𝑡,𝑓) =  ∫ ∫ 𝐴𝑧(𝑢, 𝜏)𝑔(𝜐, 𝜏)𝑒(𝑗2𝜋[𝑢𝑡−𝑓𝜏])𝑑𝑢 𝑑𝜏∞
−∞

∞
−∞  (46) 

𝑤ℎ𝑒𝑟𝑒 𝐴𝑧(𝑢, 𝜏) 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 𝐴𝑧(𝑢, 𝜏) =  ∫ 𝑧 �𝑡 + 𝜏
2
� 𝑧∗ �𝑡 − 𝜏

2
� 𝑒−𝑗2𝜋𝑡𝑢∞

−∞ 𝑑𝑡 (47) 

𝑔(𝜈, 𝜏) 𝑖𝑠 𝑡ℎ𝑒 𝑘𝑒𝑟𝑛𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

8.7.4 Wigner-Ville 

Wigner-Ville distribution is a very important quadratic-form, time-frequency distribution with 
optimized resolution in both the time and frequency domains. Wigner-Ville is computed by 
correlating the function with itself, the correlation being a product of the function at a past time 
with the function at a future time.36 The Wigner-Ville is the Cohen technique with the kernel 
function defined as unity:  
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𝑔(𝜈, 𝜏)  = 1 

 𝑊𝑥(𝑡,𝑓) =  ∫ 𝑧 �𝑡 + 𝜏
2
� 𝑧∗ �𝑡 − 𝜏

2
� 𝑒−𝑗2𝜋𝑓𝜏∞

−∞ 𝑑𝜏 (48) 

𝑤ℎ𝑒𝑟𝑒 𝑧∗ 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑜𝑓 𝑧 

8.7.5 Choi-Williams 

The Choi-Williams distribution uses the exponential as the kernel function in the Cohen 
distribution to suppress the cross-term products in the transformation: 

𝑔(𝑣, 𝜏) =  𝑒�−
𝜐2𝜏2
𝜎 � 

 𝐶𝑊𝑥(𝑡, 𝑓) =  ∬√𝜋𝜎
|𝜏| 𝑒

−𝜋2𝜎(𝑡− 𝑢)2

𝜏2 𝑧 �𝑢 + 𝜏
2
� 𝑧∗ �𝑢 − 𝜏

2
� 𝑒−𝑗2𝜋𝑓𝜏𝑑𝑢 𝑑𝜏 (49) 

8.7.6 Zhao-Atlas-Marks (Cone-Shaped Kernel) 

The Zhao-Atlas-Marks distribution uses a time-lag kernel as the kernel function in the Cohen 
distribution for suppression of the cross-term products:  

𝑔(𝜈, 𝜏) =  𝜔(𝜏)
𝑎

2|𝜏| 𝑠𝑖𝑛𝑐
2𝜐𝜏
𝑎
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8.7.7 Hilbert-Huang Transform 

The Hilbert-Huang transform is another time-frequency analysis technique that combines 2 
processing techniques: empirical mode decomposition (EMD) and the Hilbert transform. The 
EMD is an algorithm where the signal is decomposed into a set of functions called intrinsic mode 
functions (IMF), which is almost monocomponent. The IMF represent simple oscillatory mode 
versus the harmonic output of the Fourier transform. EMD is empirical, intuitive, direct, and 
adaptive, with a posteriori defined basis derived from the data.22 

EMD has shortcomings in resolving low frequencies. It can only resolve the signal when the 
spectral components differ by more than an octave. False artificial components are produced by 
EMD, but new techniques such as ensemble EMD have overcome this false mode 
decomposition.24 

The Hilbert-Huang transform is defined as follows:37 

Empirical Mode Decomposition 

An IMF is defined as a function that satisfies the following requirements: 

1.  In the whole data set, the number of extrema and the number of zero-crossings must either 
be equal or differ at most by 1.  
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2.  At any point, the mean value of the envelope defined by the local maxima and the envelope 
defined by the local minima is 0.  

Therefore, an IMF represents a simple oscillatory mode as a counterpart to the simple harmonic 
function, but it is much more general: instead of constant amplitude and frequency in a simple 
harmonic component, an IMF can have variable amplitude and frequency along the time axis. 
The procedure of extracting an IMF is called sifting. The sifting process is as follows: 

1.  Identify all the local extrema in the test data.  

2.  Connect all the local maxima by a cubic spline line as the upper envelope.  

3.  Repeat the procedure for the local minima to produce the lower envelope.  

The upper and lower envelopes should cover all the data between them. Their mean is m1. The 
difference between the data and m1 is the first component h1: 

𝑋(𝑡) −  𝑚1 =  ℎ1 

Ideally the construction of h1 described above should have made it symmetric and have all 
maxima positive and all minima negative. Also, h1 should satisfy the definition of an IMF. After 
the first round of sifting, the crest may become a local maximum. New extrema generated in this 
way actually reveal the proper modes lost in the initial examination. In the subsequent sifting 
process, h1 can only be treated as a proto-IMF. In the next step, it is treated as the data, then 

ℎ1 −  𝑚11 =  ℎ11 

After repeated sifting up to k times, h1 becomes an IMF, that is, 

ℎ1(𝑘−1) −  𝑚1𝑘 =  ℎ1𝑘 

Then, it is designated as the first IMF component from the data: 

𝑐1 =  ℎ1𝑘 

The Stoppage Criteria of the Sifting Process 

The stoppage criterion determines the number of sifting steps to produce an IMF. Two different 
stoppage criteria have been used traditionally: 

1.  The first criterion is proposed by Huang. It is similar to the Cauchy convergence test, and 
we define a sum of the difference, SD, as  

 𝑆𝐷𝑘 =  ∑ |ℎ𝑘−1(𝑡)−ℎ𝑘(𝑡)|2𝑇
𝑡=0

∑ ℎ𝑘−1
2 (𝑡)𝑇

𝑡=0
 (51) 

Then the sifting process is stopped when SD is smaller than a pre-defined value.  

2.  A second criterion is based on the number called the S-number, which is defined as the 
number of consecutive siftings when the numbers of zero-crossings and extrema are equal 
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or at most differing by 1. An S-number is pre-selected, and the sifting process will stop 
only if for S consecutive times the number of zero-crossings and extrema stay the same, 
and are equal or at most differ by 1.  

Once a stoppage criterion is selected, the first IMF, c1, can be obtained. Overall, c1 should 
contain the finest scale or the shortest period component of the signal. We can, then, separate c1 
from the rest of the data by 𝑋(𝑡) −  𝑐1 =  𝑟1. Since the residue, r1, still contains longer period 
variations in the data, it is treated as the new data and subjected to the same sifting process as 
described above. 

This procedure can be repeated to all the subsequent rj's, and the result is 

𝑟𝑛−1 −  𝑐𝑛 =  𝑟𝑛 

The sifting process stops finally when the residue, rn, becomes a monotonic function from which 
no more IMF can be extracted. From the above equations, we can induce that 

 𝑋(𝑡) =  ∑ 𝑐𝑗 +  𝑟𝑛𝑛
𝑗=1  (52) 

Thus, a decomposition of the data into n-empirical modes is achieved. The components of EMD 
are usually physically meaningful because the characteristic scales are defined by the physical 
data. 

Hilbert Transform 

Having obtained the IMF components, the instantaneous frequency can be computed by applying 
the Hilbert transform to each of the IMF. After performing the Hilbert transform on each IMF 
component, the original data can be expressed as the real part in the following form: 

 𝑋(𝑡) =  𝑅𝑒𝑎𝑙 ∑ 𝑎𝑗(𝑡)𝑒𝑖𝑓𝜔𝑗(𝑡)𝑑𝑡𝑛
𝑗=1  (53) 

8.8 Cepstrum Analysis 

Cepstrum analysis is a tool for the detection of periodicity in a frequency spectrum. The 
cepstrum is defined as the power spectrum of the logarithm of the power spectrum of the signal 
or spectrum of a spectrum. For a time series with multiple harmonic components, the cepstrum 
will yield a single component. For the case of the bearing fault, an impact response tends to 
generate a series of harmonics related to the fault type. Even though the impact is low energy, 
the combination of the harmonics enhances the detection process, but this is more difficult to 
interpret when more than 1 harmonics series exists.  

Principal use of the cepstrum for bearing fault detection is in detecting periodicities associated 
with bearing frequency harmonics and associated sideband patterns. The cepstrum is the signal 
processing technique that takes the inverse FFT of the logarithm of the squared magnitude of the 
Fourier transform of the measured signal:38  
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 ( ) ( )[ ]( )fSFFTC xxp log1−=τ  (54) 

9. Conclusion 

This primer was written to provide insight into the various techniques that would be necessary to 
generate features for the use in the development of roller bearing diagnostics and prognostics. 
These techniques are necessary to transform the time-domain vibrational data into domains that 
provide clear indication of the bearing fault and degradation. Feature generation is somewhat 
straightforward when considering the overall process of developing diagnostics and prognostics 
algorithms. The next step is feature extraction. These selected features need to strongly correlate 
to the incipient fault and trend with the degradation.  

It is through these transformations that features will be formulated that have sufficient signal-to-
noise values that permit easier and confident detection and classification of the fault. It would be 
an advantage if one could use the output of the sensor, in this case, an accelerometer, and 
determine the condition from the amplitude directly, but this is not the situation. Transforming 
the time data into the various domains aids in the fault detection, but the features are not 
necessary linear with degradation. In some cases, the features actual seem to indicated a recovery 
from the fault. These features can be sensitive over a period in the degradation progression or 
nonlinear with respect to the fault degradation cycle. 

This report summarized the various techniques that can easily be found in the open literature and 
provides some intuition in terms of the application of these techniques as they relate to bearing 
failures progression. Some are very easy to compute and comprehend, such as statistical and 
time-domain analysis. On the other hand, the Hilbert-Huang transformation is very 
computational intensive and may not necessarily converge to a solution. The various frequency-
domain techniques have their advantages and disadvantages. There are artifacts in the 
computations that one must be aware of in order to properly interpret transformations as they 
relate to the bearing fault degradation signatures. It is the proper interpretation of the various 
transform domains in relationship to the degradation cycle that is important in comprehending 
bearing failure. 

The use of these techniques depends on having the proper sensor/data acquisition system that 
provide sufficient sensitivity, dynamic range, and frequency response in order to employ these 
techniques effectively. There are filtering techniques that will be necessary to improve the 
quality of the sensor data prior to using some of the techniques described in this report. 
Application of filtering is highly dependent on the actual hardware being monitored. The 
“resonance” is a function of the mechanical structure that the bearing is used in. 
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Effective use of these techniques is highly dependent on the final application. If an operator is 
used in the decision loop, these techniques would prove to be invaluable in the decision-making 
process. In this case, the trained/expert operator would need to have the necessary insight into 
the bearing failure stages and their correlation to the feature output. There are many techniques 
that can be used to interpret these features in an automated decision. Techniques from statistical 
analysis, pattern recognition, data mining, and machine learning have been developed over the 
last few decades that can be used. What is needed for the development of diagnostic and 
prognostic algorithms is a framework and methodology organization. Significant amounts of data 
will be necessary for the evaluation and developing these algorithms. In addition to the data, very 
good “ground truth” is necessary for the proper identification of the health state of a bearing. 
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List of Symbols, Abbreviations, and Acronyms 

2-D 2-dimensional  

3-D 3-dimensional  

A/D analog-to-digital  

ABMA American Bearing Manufacturers Association 

AM amplitude modulation 

ARL US Army Research Laboratory 

BPFI ball pass frequency inner  

BPFO ball pass frequency outer 

BSF ball spin frequency  

CBM condition-based maintenance  

EMD empirical mode decomposition 

FFT fast Fourier transform  

FTF fundamental train frequency  

gSE spike energy spectrum  

HFD high frequency detection  

HOS higher-order spectra  

IMF intrinsic mode functions  

ISO International Organization for Standardization  

LSB  least significant bit  

MTBF Mean Time Between Failure 

PDF probability density function  

QPC quadratic phase coupling  

RMS root mean square  

SEE spectra emission energy  
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SNR signal-to-noise ratio  

SPM shock pulse method  

STFT short-time Fourier transform  
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